Angular Projectile Motion

Angular Projectile Motion

Angular Projectile Motion

In angular projectile motion, a body is projected with an initial velocity [math]u[/math] at an angle [math]\theta[/math] with respect to the horizontal. The motion is two-dimensional and follows a parabolic trajectory due to the influence of gravity.

  1. Horizontal Motion:
    • The horizontal velocity remains constant as there is no acceleration in the horizontal direction.
    • The displacement in the horizontal direction increases uniformly with time.
  2. Vertical Motion:
    • The vertical velocity decreases due to the effect of gravity.
    • At the highest point of the trajectory, the vertical velocity becomes zero.
    • The body accelerates downward due to gravity after reaching the highest point.

1. Equation of Motion

The position of the projectile at any time [math]t[/math] is determined by resolving the motion into horizontal and vertical components.

Horizontal Motion:

  • Initial velocity in the horizontal direction:
    [math]v_x = u \cos\theta[/math]
  • Displacement in the horizontal direction:
    [math]x = (u \cos\theta) t[/math]

Vertical Motion:

  • Initial velocity in the vertical direction:
    [math]v_y = u \sin\theta[/math]
  • Displacement in the vertical direction:
    [math]y = (u \sin\theta) t – \frac{1}{2} g t^2[/math]

Thus, the position vector of the projectile at any time [math]t[/math] is:

[math]\vec{r} = (u \cos\theta) t \hat{i} + \left[(u \sin\theta) t – \frac{1}{2} g t^2\right] \hat{j}[/math]


Cartesian Form of Equation of Motion in Angular Projection

The Cartesian equation of motion describes the trajectory of a projectile launched at an angle [math]\theta[/math] with an initial velocity [math]u[/math]. The motion is a parabola. Here’s the detailed derivation:


Equations of Motion in Component Form

Horizontal Motion:

  • Initial velocity in the horizontal direction:
    [math]v_x = u \cos\theta[/math]
  • Horizontal displacement:
    [math]x = (u \cos\theta) t[/math]

Vertical Motion:

  • Initial velocity in the vertical direction:
    [math]v_y = u \sin\theta[/math]
  • Vertical displacement under gravity:
    [math]y = (u \sin\theta) t – \frac{1}{2} g t^2[/math]

Expressing Time ([math]t[/math]) in Terms of Horizontal Displacement ([math]x[/math]):

From the horizontal motion equation:

[math]x = (u \cos\theta) t[/math]

Solve for [math]t[/math]:

[math]t = \frac{x}{u \cos\theta}[/math]


Substituting [math]t[/math] into the Vertical Motion Equation:

The vertical displacement equation is:

[math]y = (u \sin\theta) t – \frac{1}{2} g t^2[/math]

Substitute [math]t = \frac{x}{u \cos\theta}[/math]:

[math]y = (u \sin\theta) \frac{x}{u \cos\theta} – \frac{1}{2} g \left(\frac{x}{u \cos\theta}\right)^2[/math]

Simplify the terms:

[math]y = x \tan\theta – \frac{g x^2}{2 u^2 \cos^2\theta}[/math]


Final Cartesian Equation of the Trajectory:

[math]y = x \tan\theta – \frac{g x^2}{2 u^2 \cos^2\theta}[/math]


Key Observations:

  1. The equation is a parabola of the form:
    [math]y = ax + bx^2[/math]
    where:
    • [math]a = \tan\theta[/math]
    • [math]b = -\frac{g}{2 u^2 \cos^2\theta}[/math]
  2. Physical Interpretation:
    • The term [math]x \tan\theta[/math] represents the linear rise of the projectile.
    • The term [math]-\frac{g x^2}{2 u^2 \cos^2\theta}[/math] represents the downward curvature due to gravity.

Let me know if you’d like further refinements!


2. Time of Flight ([math]T[/math])

The time of flight is the total time the projectile remains in the air. At the end of the flight, the vertical displacement is zero ([math]y = 0[/math]).

From the vertical displacement equation:
[math]y = (u \sin\theta) t – \frac{1}{2} g t^2[/math]
Set [math]y = 0[/math]:

[math](u \sin\theta) t – \frac{1}{2} g t^2 = 0[/math]

Factorize:

[math]t \left[(u \sin\theta) – \frac{1}{2} g t\right] = 0[/math]

This gives two solutions:
[math]t = 0[/math] (at the start)

[math]t = \frac{2 u \sin\theta}{g}[/math]

Thus, the total time of flight is:

[math]T = \frac{2 u \sin\theta}{g}[/math]


3. Horizontal Range ([math]R[/math])

The horizontal range is the horizontal distance traveled during the time of flight.
From horizontal motion:

[math]x = (u \cos\theta) t[/math]

For the total flight time [math]T[/math]:
[math]R = (u \cos\theta) T[/math]
Substitute [math]T = \frac{2 u \sin\theta}{g}[/math]:

[math]R = u \cos\theta \cdot \frac{2 u \sin\theta}{g}[/math]

Simplify using [math]\sin 2\theta = 2 \sin\theta \cos\theta[/math]:

[math]R = \frac{u^2 \sin 2\theta}{g}[/math]

Maximum Range:

The range is maximum when [math]\sin 2\theta = 1[/math], i.e., [math]\theta = 45^\circ[/math].
Maximum range:

[math]R_{\text{max}} = \frac{u^2}{g}[/math]


4. Maximum Height ([math]H_{\text{max}}[/math])

The maximum height is reached when the vertical velocity becomes zero ([math]v_y = 0[/math]).
From vertical motion:
[math]v_y = u \sin\theta – g t[/math]
Set [math]v_y = 0[/math]:

[math]t = \frac{u \sin\theta}{g}[/math]

At this time, the vertical displacement is:
[math]y = (u \sin\theta) t – \frac{1}{2} g t^2[/math]
Substitute [math]t = \frac{u \sin\theta}{g}[/math]:

[math]H_{\text{max}} = (u \sin\theta) \cdot \frac{u \sin\theta}{g} – \frac{1}{2} g \left(\frac{u \sin\theta}{g}\right)^2[/math]

Simplify:

[math]H_{\text{max}} = \frac{u^2 \sin^2\theta}{2 g}[/math]


5. Velocity at Any Instant ([math]\vec{v}[/math])

At any time [math]t[/math], the velocity has horizontal and vertical components:

Horizontal Component:

[math]v_x = u \cos\theta[/math] (remains constant)

Vertical Component:

[math]v_y = u \sin\theta – g t[/math]

The velocity vector is:

[math]\vec{v} = (u \cos\theta) \hat{i} + \left[(u \sin\theta – g t)\right] \hat{j}[/math]

Magnitude of Velocity:

[math]v = \sqrt{v_x^2 + v_y^2}[/math]
Substitute the components:

[math]v = \sqrt{(u \cos\theta)^2 + (u \sin\theta – g t)^2}[/math]


6. Angle of Impact

The angle [math]\theta_{\text{impact}}[/math] that the velocity vector makes with the horizontal is given by:

[math]\tan\theta_{\text{impact}} = \frac{v_y}{v_x}[/math]

Substitute the components:

[math]\tan\theta_{\text{impact}} = \frac{u \sin\theta – g t}{u \cos\theta}[/math]

At the time of hitting the ground ([math]t = T[/math]):

[math]\tan\theta_{\text{impact}} = \frac{u \sin\theta – g \cdot \frac{2 u \sin\theta}{g}}{u \cos\theta}[/math]

Simplify:
[math]\tan\theta_{\text{impact}} = \frac{-u \sin\theta}{u \cos\theta}[/math]

[math]\theta_{\text{impact}} = \tan^{-1}(-\tan\theta)[/math]

Thus, the body hits the ground at an angle equal to [math]\theta[/math] but below the horizontal.


Final Summary:

  1. Time of Flight:

[math]T = \frac{2 u \sin\theta}{g}[/math]

Horizontal Range:
[math]R = \frac{u^2 \sin 2\theta}{g}[/math]
[math]R_{\text{max}} = \frac{u^2}{g}[/math] (when [math]\theta = 45^\circ[/math])

Maximum Height:

[math]H_{\text{max}} = \frac{u^2 \sin^2\theta}{2 g}[/math]

Velocity at Any Instant:
[math]\vec{v} = (u \cos\theta) \hat{i} + \left[(u \sin\theta – g t)\right] \hat{j}[/math]

[math]v = \sqrt{(u \cos\theta)^2 + (u \sin\theta – g t)^2}[/math]

Angle of Impact:

[math]\theta_{\text{impact}} = \tan^{-1}(-\tan\theta)[/math]


Prove that the horizontal range remains the same when the angle of projection is [math]\theta[/math] or [math](90^\circ – \theta)[/math]:

Horizontal Range Formula

The horizontal range [math]R[/math] for a projectile is given by:

[math]R = \frac{u^2 \sin 2\theta}{g}[/math]

Now, let’s substitute [math]\theta[/math] with [math](90^\circ – \theta)[/math] and show that the formula remains the same.

Substituting [math](90^\circ – \theta)[/math]:

Replace [math]\theta[/math] in the formula with [math](90^\circ – \theta)[/math]:

[math]R’ = \frac{u^2 \sin 2(90^\circ – \theta)}{g}[/math]

Simplify the angle inside the sine function:

[math]2(90^\circ – \theta) = 180^\circ – 2\theta[/math]

Thus:

[math]R’ = \frac{u^2 \sin(180^\circ – 2\theta)}{g}[/math]

Using the Trigonometric Identity:

The sine function satisfies the identity:

[math]\sin(180^\circ – x) = \sin x[/math]

Therefore:

[math]\sin(180^\circ – 2\theta) = \sin 2\theta[/math]

Substitute back into the equation for [math]R'[/math]:

[math]R’ = \frac{u^2 \sin 2\theta}{g}[/math]

Conclusion:

[math]R’ = R[/math]

This proves that the range remains the same for angles [math]\theta[/math] and [math](90^\circ – \theta)[/math].


Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply

Your email address will not be published. Required fields are marked *