testing

Here are the detailed notes on the time period in terms of [math]k[/math] and [math]m[/math], incorporating the latest formatting preference:


Time Period in Terms of [math]k[/math] and [math]m[/math]

The time period [math]T[/math] of an oscillating system can be derived by analyzing the relationship between force, angular frequency, and the spring constant.


1. Force in SHM

From Newton’s second law:

[math]F = m a[/math]

Using the equation for acceleration in SHM:
[math]a(t) = -\omega^2 x[/math]
we substitute:

[math]F = -m \omega^2 x[/math]

From Hooke’s law, the restoring force is:

[math]F = -k x[/math]

Equating the two expressions for force:

[math]-m \omega^2 x = -k x[/math]

Canceling [math]x[/math] (as [math]x \neq 0[/math]):

[math]m \omega^2 = k[/math]

Thus,

[math]\omega = \sqrt{\frac{k}{m}}[/math]


2. Time Period in SHM

The angular frequency [math]\omega[/math] is related to the time period [math]T[/math] by:

[math]\omega = \frac{2\pi}{T}[/math]

Substituting [math]\omega = \sqrt{\frac{k}{m}}[/math]:

[math]\frac{2\pi}{T} = \sqrt{\frac{k}{m}}[/math]

Rearranging for [math]T[/math]:

[math]T = 2\pi \sqrt{\frac{m}{k}}[/math]


Final Equations

  1. Force:
    [math]F = -k x[/math]

[math]F = -m \omega^2 x[/math]

Angular Frequency:

[math]\omega = \sqrt{\frac{k}{m}}[/math]

Time Period:

[math]T = 2\pi \sqrt{\frac{m}{k}}[/math]


Let me know if you need more explanations or further assistance!

Here is the LaTeX code for the equation written between the required tags:[math] \textstyle R = \frac{u^2 \sin 2\theta}{g} [/math]

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply

Your email address will not be published. Required fields are marked *